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LETTER TO THE EDITOR 

Photon time of arrival, time between consecutive photons and 
the moment generating function 

B E A Saleh 
Electrical Engineering Department, University of Santa Catarina, Florianopolis, 
Santa Catarina, Brazil 

Received 9 October 1973 

Abstract. The probability densities of the time of arrival of photoelectrons and 
the time interval between consecutive photoelectrons are respectively proportional 
t o  the first and second time derivatives of the moment generating function, Expres- 
sions for these densities are given for several classes of optical fields. 

The statistical properties of light can be studied by observing the statistics of detected 
photoelectrons. An important technique for studying the statistics of photoelectrons 
is to observe the probability distribution of time intervals (Arecchi et al 1966, Morgan 
and Mandel 1966, Glauber 1967). Time interval measurements have been used for 
the estimation and detection of optical signals in optical communications (Davidson 
and Amoss 1973). Also, because the distribution of the time interval between consecu- 
tive photons is the simplest measurement that depends on the second-order field- 
correlation function (Present and Scar1 1972), it can be used for the spectral analysis 
of optical signals (Mandel 1963, Wolf 1965). 

Two time intervals are of interest: (i) the time of arrival T (sometimes called the 
residual waiting time, or the forward recurrence time, Cox and Lewis 1968), which 
is the time interval between an arbitrary time and the first photoelectron registered 
after i t ;  ( i i )  the time interval T between consecutive photoelectrons (also called the 
lifetime). If the photoelectron statistics is purely Poisson then T and T have the same 
probability distribution which is exponential (Cox and Lewis 1968). 

We have previously shown (Saleh 1973) that the probability distribution f , ( T )  
of the time of arrival T, is related to  the optical field’s moment generating function 
(MGF) by a very simple rule (equation (9) below). In this letter, i t  is shown that the 
probability distributionf,(T) of the time T between consecutive photoelectrons is also 
related to the MGF by another simple rule (equation (10) below). These rules, which 
are valid for any stationary light field, are used to derive expressions forf,(T) and 
&(T) for several important fields whose MGF have been found by other authors. 
Gaussian light with lorentzian or rectangular spectrum, and mixtures of coherent 
and gaussian light are treated. 

Let I (r , t )  represent the light intensity at position r and time t (measured in photon 
numbers per second), and let U(t) = j A Z ( t , t )  d2r  be its integration over the detector 
area A .  For stationary light the expectation value of U(t )  is independent of time 
and equals the average number of counts per second ( U ( t ) )  = f i .  The moment 
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generating function (MGF) of U(t)  is defined as 

It is known that conditioned on a certain realization of the stochastic process U(t), 
the photoelectron statistics is Poisson (Jakeman and Pike 1969). From the well known 
properties of a Poisson process we can write our time interval probability distributions 
as 

and 

We are interested in using (l), (2) and ( 3 )  to find a relation between the probability 
distributions and the MGF. It is useful to start by considering the cumulative probability 
distributions defined as 

Fl(T) = (J:U(x)exp(- jl U(t)dt)dx) = 1-(exp(- / : U ( t ) d t ) ) ,  

Q(s,T) = e(-$,- T )  = (exp(s 
dt)), 0 

and take its derivative 
a a -T 

-Q(s,T) = --Q(-s,-T) = -(sU(-T)exp(sjo U(t)dt)), 
aT a(- T )  

then using the stationary property of U(t) we get 
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which when substituted in (7) gives 

Since the probability densities fi(T) and &(T) are the derivatives of Fl(T) and F2(7), 
then 

and 

Equation (IO) is the main result of this letter. Expressions for the moment generating 
function have been found for most important optical fields (Jakeman and Pike 1969) 
and it appears very simple to use any of (6), (8), (9) or (10) and find the desired time- 
interval distribution. In the following, we give a list of expressions offl(T) andf2(T) 
for some of the important classes of optical fields. 

(i) Coherent light. The MGF of a coherent field is (Glauber 1967) 

Q(s,T) = exp( -sfiT), 

f i ( T )  = fiexp(-fiT), 
f2(.) = f i  exp( - f i ~ ) .  

hence, 

Note that,fl(T) = f , ( T )  is the exponential distribution characterizing a purely Poisson 
photoelectron process. 

(ii) Gaussian light with long coherence time. A gaussian optical field whose coherence 
time i s  much longer than ( l l f i ) ,  the average time interval, has a MGF 

Q(s,T) N (1 +.vfiT)-'. 

Tn this case 

and 

which have been obtained before (Glauber 1967). 

"f , (T)  = fi(1 +?lT)-2 ,  

f z ( T )  = 2fi(1 + f i T ) - 3 ,  

(ii i) Gaussian-lorentziun light . 
Q;s, T )  = exp (yiiT)[cosh(a(s)AT) +B(s)sinh(x(s)fiT)]-l 

where 
r 

Y = I  n 
N ( S )  = (y2 + 2ys)l'" 

and F is the bandwidth. This MGF gives the probability densities, 

f i Q ( 1  , T ) ~ Y A  fl(9 = -- > 

fJ.1 = - 5 

B 

fiQ(l,T)4y2(A2+4dC2) 
B2 

2 A  
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where 
A = ( y  + x )  exp(aiiT) - ( y  - R) exp( -WIT), 
B = ( y  + E ) ~  exp(afiT) - ( y  - a)2 exp( - xiiT), 

and a = ~ ( 1 ) .  In the limit of long coherence time (y = 0), (14) and (15) give back 
(12) and (13) above. 

(iv) Gaussian-rectangular light. Gaussian light with a rectangular shaped spectrum 
having a bandwidth I' has MGF approximately given by (Karp and Clark 1971), 

Q(s,T)  N (1 + ~ f i T ) - ' ~ ' ' ~ ~ ; ; ~ )  

where y = F/fi. This gives the probability densities 

In  the limit y + 0, (12) and (13) are reproduced. 
(v) A mixture of coherent and gaussian light (long coherence-tinte limit). 

1 s(1 --E)iiT 
Q(s,T) = exp --___ 

1 +s-EnT [ ( l + s ~ f i T ) ]  

where ii is the average count rate due to the mixed light and E is the ratio of the intensity 
of the incoherent part to the total intensity. In this case, 

The limit -E = 0 (coherent light) gives back (11) and the limit E = 1 (incoherent light) 
recovers (1 2) and (1 3). Equations (1 8) and (19) are valid for light with long coherence 
time, ie y -> 0. This limitation can be removed if we use the already found general 
expressions of the MGF (Jakeman and Pike 1969, Karp and Clark 1971) which are 
quite lengthy. 
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